إدخال مسألة...
الرياضيات المتناهية الأمثلة
خطوة 1
خطوة 1.1
يُعد إيجاد القاسم المشترك الأصغر لقائمة القيم بمثابة إيجاد المضاعف المشترك الأصغر لقواسم تلك القيم.
خطوة 1.2
المضاعف المشترك الأصغر هو أصغر عدد موجب يمكن قسمته على جميع الأعداد بالتساوي.
1. اكتب قائمة العوامل الأساسية لكل عدد.
2. اضرب كل عامل في أكبر عدد من مرات ظهوره في أي رقم.
خطوة 1.3
العدد ليس عددًا أوليًا لأن له عامل موجب واحد فقط، وهو العدد نفسه.
ليس أوليًا
خطوة 1.4
المضاعف المشترك الأصغر لـ هو حاصل ضرب كل العوامل الأساسية في أكبر عدد من المرات التي تظهر فيها في أي من العددين.
خطوة 1.5
عامل هو نفسها.
تحدث بمعدل من المرات.
خطوة 1.6
عامل هو نفسها.
تحدث بمعدل من المرات.
خطوة 1.7
المضاعف المشترك الأصغر لـ هو حاصل ضرب كل العوامل في أكبر عدد من المرات التي تظهر فيها في أي من الحدين.
خطوة 2
خطوة 2.1
اضرب كل حد في في .
خطوة 2.2
بسّط الطرف الأيسر.
خطوة 2.2.1
ألغِ العامل المشترك لـ .
خطوة 2.2.1.1
ألغِ العامل المشترك.
خطوة 2.2.1.2
أعِد كتابة العبارة.
خطوة 2.2.2
وسّع باستخدام طريقة "الأول، الخارجي، الداخلي، الأخير".
خطوة 2.2.2.1
طبّق خاصية التوزيع.
خطوة 2.2.2.2
طبّق خاصية التوزيع.
خطوة 2.2.2.3
طبّق خاصية التوزيع.
خطوة 2.2.3
بسّط ووحّد الحدود المتشابهة.
خطوة 2.2.3.1
بسّط كل حد.
خطوة 2.2.3.1.1
اضرب في .
خطوة 2.2.3.1.2
انقُل إلى يسار .
خطوة 2.2.3.1.3
اضرب في .
خطوة 2.2.3.2
اطرح من .
خطوة 2.3
بسّط الطرف الأيمن.
خطوة 2.3.1
بسّط كل حد.
خطوة 2.3.1.1
ألغِ العامل المشترك لـ .
خطوة 2.3.1.1.1
أخرِج العامل من .
خطوة 2.3.1.1.2
ألغِ العامل المشترك.
خطوة 2.3.1.1.3
أعِد كتابة العبارة.
خطوة 2.3.1.2
ارفع إلى القوة .
خطوة 2.3.1.3
ارفع إلى القوة .
خطوة 2.3.1.4
استخدِم قاعدة القوة لتجميع الأُسس.
خطوة 2.3.1.5
أضف و.
خطوة 2.3.1.6
اضرب في .
خطوة 2.3.1.7
وسّع باستخدام طريقة "الأول، الخارجي، الداخلي، الأخير".
خطوة 2.3.1.7.1
طبّق خاصية التوزيع.
خطوة 2.3.1.7.2
طبّق خاصية التوزيع.
خطوة 2.3.1.7.3
طبّق خاصية التوزيع.
خطوة 2.3.1.8
بسّط ووحّد الحدود المتشابهة.
خطوة 2.3.1.8.1
بسّط كل حد.
خطوة 2.3.1.8.1.1
اضرب في .
خطوة 2.3.1.8.1.2
انقُل إلى يسار .
خطوة 2.3.1.8.1.3
اضرب في .
خطوة 2.3.1.8.2
اطرح من .
خطوة 3
خطوة 3.1
بما أن موجودة على المتعادل الأيمن، بدّل الأطراف بحيث تصبح على المتعادل الأيسر.
خطوة 3.2
انقُل كل الحدود التي تحتوي على إلى المتعادل الأيسر.
خطوة 3.2.1
اطرح من كلا المتعادلين.
خطوة 3.2.2
أضف إلى كلا المتعادلين.
خطوة 3.2.3
جمّع الحدود المتعاكسة في .
خطوة 3.2.3.1
اطرح من .
خطوة 3.2.3.2
أضف و.
خطوة 3.2.4
بسّط كل حد.
خطوة 3.2.4.1
أعِد كتابة بالصيغة .
خطوة 3.2.4.2
وسّع باستخدام طريقة "الأول، الخارجي، الداخلي، الأخير".
خطوة 3.2.4.2.1
طبّق خاصية التوزيع.
خطوة 3.2.4.2.2
طبّق خاصية التوزيع.
خطوة 3.2.4.2.3
طبّق خاصية التوزيع.
خطوة 3.2.4.3
بسّط ووحّد الحدود المتشابهة.
خطوة 3.2.4.3.1
بسّط كل حد.
خطوة 3.2.4.3.1.1
اضرب في .
خطوة 3.2.4.3.1.2
انقُل إلى يسار .
خطوة 3.2.4.3.1.3
اضرب في .
خطوة 3.2.4.3.2
اطرح من .
خطوة 3.2.5
اطرح من .
خطوة 3.2.6
أضف و.
خطوة 3.2.7
أضف و.
خطوة 3.3
اطرح من كلا المتعادلين.
خطوة 3.4
اطرح من .
خطوة 3.5
حلّل إلى عوامل باستخدام طريقة AC.
خطوة 3.5.1
ضع في اعتبارك الصيغة . ابحث عن زوج من الأعداد الصحيحة حاصل ضربهما ومجموعهما . في هذه الحالة، حاصل ضربهما ومجموعهما .
خطوة 3.5.2
اكتب الصيغة المحلّلة إلى عوامل مستخدمًا هذه الأعداد الصحيحة.
خطوة 3.6
إذا كان أي عامل فردي في المتعادل الأيسر يساوي ، فالعبارة بأكملها تساوي .
خطوة 3.7
عيّن قيمة العبارة بحيث تصبح مساوية لـ وأوجِد قيمة .
خطوة 3.7.1
عيّن قيمة بحيث تصبح مساوية لـ .
خطوة 3.7.2
أضف إلى كلا المتعادلين.
خطوة 3.8
عيّن قيمة العبارة بحيث تصبح مساوية لـ وأوجِد قيمة .
خطوة 3.8.1
عيّن قيمة بحيث تصبح مساوية لـ .
خطوة 3.8.2
أضف إلى كلا المتعادلين.
خطوة 3.9
الحل النهائي هو كل القيم التي تجعل المعادلة صحيحة.